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Mossbauer effect of STFe-doped silicon 
nitride 

Silicon nitride has a great potential for high- 
temperature materials [1]. It has been well known 
that iron doping into silicon accelerates the 
nitridation of the material [2, 3]. The purpose of 
the present study was to clarify the role of iron in 
silicon nitride structure by means of iron-57 
MSssbauer spectroscopy�9 

Silicon powder (99.999%) and a small amount 
of Fe203 (enriched with 94% STFe) were mixed 
and pressed to pellets. They were put on dummy 
S/aN+ pellets to avoid direct contact with an 
AI~O~ boat, and were nitrided at a maximum 
temperature of 1430 ~ C in a nitrogen gas atmos- 
phere (O~ < 0.5 ppm, dew point <---60 ~ C). The 
products were identified with an X-ray 
diffractometor as a--SisN+ containing a small 
amount of/~-SisN+ and were subsequently studied 
by MSssbauer spectroscopy. 

The MSssbauer equipment (Elscient Co) was 
used in a constant acceleration mode. The 
MSssbauer spectra were recorded at room tempera- 
ture using a source of s7 Co in Cu, and the velocity 
scale was calibrated by an iron foil and sodium 
nitroprusside. 

Fig. 1 shows a typical MSssbauer spectrum of 
0.41 at.% Fe-doped silicon nitride. The spectrum 
is composed of two peaks of an equal intensity. 
The isomer shift (~) was +0.277 mm sec -~ , indi- 
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Figure 2 MSssbauer spectrum of  2.61 at. % SV~Fe -doped 
Si s N 4 at room temperature.  

cat/rig that the iron atoms were in the Fe 3+ state 
[4]. The quadrupole splitting (AEQ) was 
0.531 mm see -1 ; Fe 3+ is S-state (3d s ; 6Ssn) and 
has no electric field gradient of its own. Thus, this 
relatively large value of AEQ can come from a 
highly asymmetrical electrical environment around 
Fe 3+ ions. A line width was 0.389mmsec -1, 
which was larger than that of sodium nitro- 
prusside (0.248 mm see -1). Similar spectra were 
observed in the materials with dopant levels up to 
0.63 at. % Fe and their MSssbauer parameters were 
independent of the Fe content. Above 0.63 at. % 
Fe, another magnetic hyperfine splitting appeared 
(Fig. 2). The magnetic hyperfine field and the 
peak positions agreed with those of metallic iron. 
A solubility limit of iron into Si3N4, therefore, 
would lie around 0.6 at. % at 1430 ~ C. 

In order to understand the magnitude of the 
quadrupole splitting observed, the observed 
AEQ value was compared with the calculated one. 
The electric field gradient (eq), the asymmetry 
parameter (~) and the AEQ can be given by the 
well-known relations [5] 

eq = Vzz 

AEQ = l e 2 q t Q ( l  + 31 7/~)~n ' 

where e is the anion charge, diagonal elements 
(Vi/) are chosen so that 1Vxxl<~lVwwl<~lVz~l, q' = 
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Figure I MSssbauer spectrum of  0.41 at. % STFe -doped 
Si 3 N+ at room temperature. 
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TABLE I Calculations of the quadrupole splitting for Fe-doped Si3N ~ containing nitrogen vacancies 

Vacant site q X 10 -2~ r/ &EQ (mm sec -~ ) Vacant site q X 10 -24 ~7 zXEQ (mm sec -i) 
around Si (1) (cm -3 ) ionicity around Si (2) (crn -3 ) ionicity 

30% 20% 30% 20% 

N (1) 0.378 0.417 0.770 0.513 N (1) 0.420 0.104 0.833 0.555 

N (1') 0.324 0.347 0.655 0.436 N (2) 0.416 0.132 0.826 0.551 

N (2) 0.422 0.056 0.834 0.557 N (2') 0.347 0.559 0.721 0.481 

N (3) 0.378 0.217 0.754 0.534 N (4) 0.369 0.288 0.740 0.493 

av. 0.765 0.502 av. 0.780 0.520 

(1 --700) q, Q is the quadrupole moment  of  the 
first exi ted state o f  STFe, and 3'= is the Sternheimer 
antishMding factor.  The generally accepted values 
of  %o and Q are - 9 . 1 4  [6] and 0.20 barn [7] ,  
respectively. 

The crystal structure of  a-Si3N4 has been 
determined by  X-ray diffraction, the space group 
being P31c [8] .  There are two types o f  silicon 
positions Si(1) and Si(2), each o f  which is 
tetrahedral ly surrounded by  nitrogen atoms. It is 
assumed that  silicon is replaced by  iron in both  
sites, and that  the degree o f  ionici ty in Si3N4 is 
30% according to Pauling's formulation [9].  The 
calculated values o f  AEQ were 0 . t9  mm sec -1 for 
Si(1) site and 0 . 1 2 m m s e c  -1 for Si(2), when 
tetrahedron was fully occupied by nitrogen. Both 
values are much smaller than the observed one, 
0.531 mm sec - t .  Fur ther  calculations were made 
by introducing a nitrogen vacancy in the 
tetrahedron,  which may result to  maintain charge 
neutral i ty over the whole volume. The calculated 

mean AEQ for the silicon nitfide containing the 
defects were 0.765 mm sec -1 for Si(1) site and 

0.780 mm sec -1 for Si(2) site (Table I). These 
values are in approximate agreement with the ob- 
served one. On the other hand, the calculation for 
20% ionici ty showed AEQ = 0.502 and 0.520 for 
Si(1) and Si(2) sites, respectively. 

It may be concluded,  therefore, that  the rela- 

tively large AEQ observed in Fe-doped Si3 N4 can 
be explained by  the presence o f  a nitrogen 
vacancy. This conclusion may also supported by  a 
study o f  nitrogen self-diffusion for "pure"  and 
Fe-doped silicon nitride [10].  
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